Fabrication of Continuous Microfibers Containing Magnetic Nanoparticles by a Facile Magneto-Mechanical Drawing

نویسندگان

  • Jin-Tao Li
  • Xian-Sheng Jia
  • Gui-Feng Yu
  • Xu Yan
  • Xiao-Xiao He
  • Miao Yu
  • Mao-Gang Gong
  • Xin Ning
  • Yun-Ze Long
چکیده

A facile method termed magneto-mechanical drawing is used to produce polymer composite microfibers. Compared with electrospinning and other fiber spinning methods, magneto-mechanical drawing uses magnetic force generated by a permanent magnet to draw droplets of polymer/magnetic nanoparticle suspensions, leading to fabrication of composite microfibers. In addition, because of the rotating collector, it is easy to control the fiber assembly such as fibrous array in parallel or crossed fibrous structure. The general applicability of this method has also been proved by spinning different polymers and magnetic nanoparticles. The resultant fibers exhibit good superparamagnetic behavior at room temperature and ultrahigh stretchability (~443.8 %). The results indicate that magneto-mechanical drawing is a promising technique to fabricate magnetic and stretchable microfibers and devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magneto-mechanical Stimulation of Bone Marrow Mesenchymal Stromal Cells for Chondrogenic Differentiation Studies

Mechanical interaction of cells and their surroundings are prominent in mechanically active tissues such as cartilage. Chondrocytes regulate their growth, matrix synthesis, metabolism, and differentiation in response to mechanical loadings. Cells sense and respond to applied physical forces through mechanosensors such as integrin receptors. Herein, we examine the role of mechanical stimulation ...

متن کامل

Microfluidic Synthesis of Microfibers for Magnetic-Responsive Controlled Drug Release and Cell Culture

This study demonstrated the fabrication of alginate microfibers using a modular microfluidic system for magnetic-responsive controlled drug release and cell culture. A novel two-dimensional fluid-focusing technique with multi-inlets and junctions was used to spatiotemporally control the continuous laminar flow of alginate solutions. The diameter of the manufactured microfibers, which ranged fro...

متن کامل

Facile synthesis of high magnetization long term stable bimetallic FeCo nanoparticles

In this study, we reported a facile synthesis of bimetallic FeCo nanoparticles (Fe-Co NPs) by FeSO4.7H2O and Co(Ac)2.4H2O in the presence of sodium borohydride and 2-thiotic acid. The structure and morphology of the nanoparticles were characterized by X-Ray Diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDS), and Transmission Electron Micros...

متن کامل

Effect of large mechanical stress on the magnetic properties of embedded Fe nanoparticles

Magnetic nanoparticles are promising candidates for next generation high density magnetic data storage devices. Data storage requires precise control of the magnetic properties of materials, in which the magnetic anisotropy plays a dominant role. Since the total magneto-crystalline anisotropy energy scales with the particle volume, the storage density in media composed of individual nanoparticl...

متن کامل

Electro-magneto-thermo-mechanical Behaviors of a Radially Polarized FGPM Thick Hollow Sphere

In this study an analytical method is developed to obtain the response of electro-magneto-thermo-elastic stress and perturbation of a magnetic field vector for a thick-walled spherical functionally graded piezoelectric material (FGPM). The hollow sphere, which is placed in a uniform magnetic field, is subjected to a temperature gradient, inner and outer pressures and a constant electric potenti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016